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Coupling of Edge-Element and Mode-Matching for
Multistep Dielectric Discontinuity in Guiding Structures

Shanjia Xu and Xinquing Sheng

Abstract—A new approach is proposed for dielectric multistep dis-
continuity in guiding structures which combines edge-element analysis
with the mode-matching method and multimode network theory. It
is demonstrated that the approach has the generality of the edge-
element analysis and the simplicity of the multimode network method,
while retaining the high accuracy of the mode-matching method. The
calculations for different multistep discontinuities verify the effectiveness
and suitability of the approach for analysis of three-dimensional (3-D)
lossy dielectric discontinuity problem.

I. INTRODUCTION

The dielectric discontinuity problem is one of most basic practical
problems in microwave engineering [1]–[4]. Of various discontinuity
problems, multistep discontinuity has been recognized as a basic dis-
continuity problem in guiding structures. It is not only because most
discontinuities in the planar circuit belong to this kind of problem,
but also that many discontinuity problems can be approximated to
this category with staircase approximation [5].

Many methods, such as the mode-matching method, the multimode
network method, and the three-dimensional (3-D) finite element
method have been developed to treat this kind of discontinuity
problem [5]–[12]. It is well known that the mode-matching method
is accurate, but it becomes very cumbersome for complicated dis-
continuity problems; it often suffers from the convergence problem
due to truncated modal expansions [6]. To overcome this difficulty,
an approach combining multimode network theory with the mode-
matching method has been developed [7]–[9]. However, searching
roots of the complex transcendental equation makes it inconvenient
for solving lossy dielectric discontinuity problems. In recent years,
the 3-D finite element method has been successfully used for solving
discontinuity problems in guidance structures [10]–[13], but long
computer time and large storage requirements limit its application.

A new approach is proposed in this paper for multistep dielectric
discontinuity in guiding structures which combines edge-element
analysis with the mode-matching method and multimode network
theory. It is demonstrated that the approach has the generality of the
edge-element analysis and the simplicity of the multimode network
treatment while retaining the high accuracy of the mode-matching
method. The calculations of the scattering characteristics for lossy
dielectric block partially filled in the waveguide, and the semicon-
ductor sample insert in the waveguide, verify the effectiveness and
suitability of the approach.

II. THEORETICAL ANALYSIS

As an example of multistep dielectric discontinuity without losing
generality, Fig. 1 presents a structure of this kind of discontinuity
with a complex dielectric constant of every segment. The solution
procedure of the proposed approach could be divided into two steps:
1) analyze the eigenvalue problems of two waveguides at the two
sides of each discontinuity in the transverse cross section with the
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Fig. 1. Multistep discontinuity in guiding structure.

Fig. 2. Triangular edge element.

edge element method; and 2) calculate the scattering characteristics
of the whole discontinuity in the longitudinal direction with the mode-
matching method combining with the multimode network theory.

A. Analysis of Eigenvalue Problem with Edge-Element Method

It is well known that the eigenvalue problem of guided wave struc-
tures can be equivalent to the variational problem of the following
functional:

F (HHH) =



[(r�HHH)� � ([p]r�HHH)� k
2

0[q]HHH
�

�HHH] dxdy (1)

wherek0 is the vacuum wavenumber;[p] and [q] are described in
detail in [14].

The full vectorHHH is interpolated by the triangular edge element
shown in Fig. 2 as
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whereT stands for transpose ande indicates theeth element,fHtg
e

and fHzg
e are, respectively, composed of three side tangential
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unknownsHt1–Ht3, and three nodal axial unknownsHz1–Hz3, and
fUg, fV g, fNg are the shape function vectors, which are defined
all the same with those in [14].

Substituting (2)–(4) into (1), from variational principle, we ob-
tain the following algebraic eigenvalue equations from which the
propagation constant� can be directly obtained:

[Att]fHtg = �
2[Btt]fHtg (5)

where[Att] and [Btt] are the same with those given in [14].
After obtaining theith eigenvalue�i and the corresponding trans-

verse componentfHtgi from (5), the transverse magnetic eigenfunc-
tion of the ith mode can be expressed as

HHHti = Ai

e

[fUgT fHtg
e
iex + fV gT fHtg

e
iey]: (6)

The longitudinal componentfHzgi of the ith eigenvector can be
determined by

fHzgi = �[Kzz ]
�1[Kzt]fHtgi: (7)

Then, according to the Maxwell equations, the transverse electric
component can be written as

Et =
1
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namely:
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and the transverse electric eigenfunction of theith mode can be
defined as

eti =
�i
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The above formulation can be discretized as

eti =
Ai�i

k2
0 e
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Here,fNxg = @
@x
fNg; fNyg = @

@y
fNg.

According to the above definition of the transverse electric eigen-
function, the characteristic impedance of theith mode is determined
by

Zi =
!�0

�i
: (12)

The amplitudeAi of the ith eigenfunction can be obtained from the
following orthonormal relation:

s

eti � htj � ds = �ij : (13)

Fig. 3. The longitudinal section of a multistep discontinuity.

B. Impedance Transform Formulas

The transverse electric and magnetic fields in the waveguide on
the left-hand side of the discontinuity can be expressed in terms of
the superposition of the complete set ofeti; ht as

Et =
i

etiUi (14)

HHHt =
i

htiIi: (15)

Similarly, we have

Et =
i

etiU i (16)

HHHt =
i

htiIi: (17)

Here, the quantities with superbar indicate those on the right-hand
side of the discontinuity. At the discontinuity plane, the tangential
field components must be continuous. From (14) to (17), we obtain

i

Uieti =
i

U ieti (18)

i

Iihti =
i

Iihti: (19)

Cross multiplying (18) byhti from right and (19) byeti from left,
then intergrating the resultant equations by invoking the orthonormal
relation (13), we obtain

Ui =
j

QijU j (20)

j

QjiIj = Ii (21)

with

Qij =
s

eti � htj � ds: (22)

Equations (20) and (21) may be written in matrix form as

fUg = [Q]fUg (23)

[Q]tfIg = fIg: (24)

According to the definition of the impedance of the multimode
network, we have

fUg = [Z]fIg fUg = [Z]fIg (25)

and the following impedance transform formula [5]:

[Z] = [Q][Z][Q]t: (26)

C. Scattering Analysis of MultiStep Discontinuity

Fig. 3 shows the longitudinal section of a multistep discontinuity. It
is known that the reflection coefficient matrix[�(z�i )] at thez = z�i
plane looking to the right can easily be obtained as

[�(z�i )] = ([Z(z�i )] + [Zoi])
�1([Z(z�i )]� [Zoi]) (27)
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TABLE I
COMPARISONS OF THETRANSMISSIONCHARACTERISTICS FOR ASAMPLE WITH DIFFERENTGAPS BETWEEN DIFFERENTANALYSIS METHODS

Fig. 4. Rectangular dielectric scattering obstacle in a waveguide.

where [Z(z�
i
)] is the input impedance matrix at thez = z�

i
plane,

determined by (26), and[Zoi] is the characteristic impedance matrix
of the ith step discontinuity. Then, the input impedance matrix at the
z = z�

i�1
plane looking to the right is determined by the impedance

transform technique as [5]

[Z(z+
i�1)] = [Zoi]([I] + [Hi][�(z

�

i
)][Hi])

� ([I]� [Hi][�(z
�

i
)][Hi])

�1 (28)

where[Hi] is the phase matrix of theith step discontinuity.[Zoi] and
[Hi] are all diagonal matrices, and their elements are, respectively,
given as

[Zoi]mn = �mn!�=�in (29)

[Hi]mn = �mn exp (�j�inli): (30)

Here,�in is the propagation constant of thenth mode in the dielectric
waveguide of theith section. Thus, the total reflection coefficient
matrix of the multistep discontinuity can be determined by using
(26)–(30) several times.

D. Symmetrical Consideration of the Structure

For a symmetrical discontinuity structure in the longitudinal direc-
tion, the scattering of a guided mode may be analyzed in terms of
the symmetrical and antisymmetrical excitations for which we have
the open-circuit (OC) and short-circuit (SC) bisection, respectively,

Fig. 5. Reflection characteristics of a dielectric-loaded waveguide.

as previously had [7]. The reflection coefficient for each guided mode
at the symmetrical plane is 1.0 for the OC bisection or�1.0 for the
SC bisection. Let[Ro] and[Rs] be the reflection coefficient matrices
at the incident plane for the OC and the SC bisection, respectively;
the guided mode reflection coefficient matrix[R] and the transmission
matrix [T ] of the entire symmetrical structure are then given by

[R] = ([R0] + [Rs])=2 (31)

[T ] = ([R0]� [Rs])=2: (32)

For the dominant mode, the scattering parametersS21 = S12 and
S11 = S22 are determined from the first row and first column of the
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Fig. 6. Cross section of the stratified lossy dielectric block in the rectangular waveguide.

[R] and [T ] matrices, respectively, as

S11 = R(1; 1) =
1

2
[R0(1; 1) +Rs(1; 1)] (33)

S21 = T (1; 1) =
1

2
[R0(1; 1)�Rs(1; 1)]: (34)

III. N UMERICAL EXAMPLES

In order to verify the effectiveness and the accuracy of the present
approach, we have analyzed two 3-D dielectric discontinuity prob-
lems. The first problem calculated is a rectangular dielectric scattering
obstacle placed in a waveguide as shown in Fig. 4. Fig. 5 shows
the magnitude of reflection coefficientjs11j versus the normalized
frequencyk0b with the complex relative permittivity as parameters.
It can be seen from Fig. 5 that the reflection coefficients for lossless
case obtained by our approach, shown by the solid line, agree very
well with the results of [15], shown by dots. Also, Fig. 5 shows
that the larger the loss of the dielectric material, namely, the larger
the imaginary part of the dielectric constant, the weaker the resonant
phenomenon in the passband, as expected. Thus, the effectiveness and
the accuracy of the present approach are justified. In our calculation, a
total of 153 nodes are used in the analysis of eigenvalue problem with
the edge-element method, 40 eigenmodes in the empty waveguide,
and 5 eigennodes in the dielectric-loaded waveguide are included
in the mode-matching procedure. The whole computing time for this
structure requires only 3 min for every frequency with a 486 personal
computer.

The second problem analyzed is a semiconductor sample inserted
in the rectangular waveguide as shown in Fig. 6, which was used
to determine the conductivity of the semiconductor by means of
contactless microwave technology [7], [8]. The sample, together with
its mounting structure, is actually a stratified lossy dielectric block.
Table I shows the comparisons of the transmission characteristics
of a semiconductor sample with different gapsg between the results
obtained with the multimode network method [7] and with the present
approach. The physical parameters of the sample are, respectively,
�p = (�41; �1816) (dielectric constant of semiconductor epitaxial
layer), �s = (11; �0:8) (dielectric constant of subtract),Y2 � Y1 =
0:002 mm (thickness of the epitaxial layer),Y3 � Y2 = 1 mm
(thickness of the substrate), andw = 5 mm (length of the sample),
while the data of the mounting structure areh = 0, �a = �b = �w =
1:0, Y1 = 11:53, a = 22:86 mm, andb = 10:16 mm. The good
agreement between the different methods can be found in Table I.
Again, the effectiveness of the approach is verified.

IV. CONCLUSION

The multistep dielectric discontinuity problem has been analyzed
by a new approach which combines edge-element analysis with mode-

matching method and multimode network theory. Our practice reveals
that the approach has the generality of the edge-element analysis and
the simplicity of the multimode network technique, while retaining
the high accuracy of the mode-matching method. The calculations of
the scattering properties for lossy dielectric block partially filled in the
waveguide, and the semiconductor segment with mounting structure
places in the waveguide, verify the effectiveness and the accuracy of
the present approach.
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